Towards an Ultra-Low Energy Computation with Asynchronous Circuits

نویسندگان

  • Tsung-Te Liu
  • Jan M. Rabaey
چکیده

Towards an Ultra-Low Energy Computation with Asynchronous Circuits by Tsung-Te Liu Doctor of Philosophy in Engineering Electrical Engineering and Computer Sciences University of California, Berkeley Professor Jan M. Rabaey, Chair Emerging biomedical applications would benefit from the availability of digital processors with substantially improved energy-efficiency. One approach to realize ultra-low energy processors is to scale the supply voltage aggressively to near or below the transistor threshold, yet the major increase in delay variability under process, voltage and temperature variations combined with the dominance of leakage power makes robust nearand sub-threshold computations and further voltage scaling extremely challenging. This research focuses on the design and implementation of robust and energy-efficient computation architectures by employing an asynchronous self-timed design methodology. A statistical framework is first presented to analyze the energy and delay of CMOS digital circuits considering a variety of timing methodologies. The proposed analysis framework combines variability and statistical performance models, which enables designers to efficiently evaluate circuit performance, and determine the optimal timing strategy, pipeline depth and supply voltage in the presence of variability. Two asynchronous self-timed designs are then implemented. First, a low-energy asynchronous logic topology using sense amplifier-based pass transistor logic (SAPTL) is presented. The SAPTL structure can realize very low energy computation by using low-leakage pass transistor networks at low supply voltages. The introduction of asynchronous operation in SAPTL further improves energy-delay performance without a significant increase in hardware complexity. The proposed self-timed SAPTL architectures provide robust and efficient asynchronous computation using a glitch-free protocol to avoid possible dynamic timing hazards. Second, an asynchronous neural signal processor is presented to dynamically minimize leakage and to self-adapt to process variations and different operating conditions. The self-timed processor demonstrates robust sub-threshold operation down to 0.25V, while consuming only 460nW in a 65nm CMOS technology, representing a 4.4X reduction in power compared to the state-of-the-art designs. The proposed asynchronous design approach enables CMOS

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asynchronous Circuits: An Increasingly Practical Design Solution

While ultra-deep-submicron design presents increasingly difficult challenges for standard synchronous design practices, recent research in asynchronous design techniques is making asynchronous circuits an increasingly practical alternative. These challenges include the increasing pressure for low-power, the growing challenge of predicting increasing impact of wire load and delay, and the perfor...

متن کامل

A Framework for Conservative and Delay-insensitive Computing

Asynchronous circuit elements are quiescent whenever they are not actually performing a computation, and thus they potentially waste less power than synchronous circuits. However, previous research on asymptotically non-dissipative computation has concentrated exclusively on synchronous computing models, while researchers on asynchronous circuits have ignored the issues of conservative, reversi...

متن کامل

Multi-Threshold Asynchronous Circuit Design for Ultra-Low Power

This paper presents an ultra-low power circuit design methodology which combines the MultiThreshold CMOS (MTCMOS) technique with quasi delay-insensitive (QDI) asynchronous logic, in order to solve the three major problems of synchronous MTCMOS circuits: (1) Sleep signal generation, (2) storage element data loss during sleep mode, and (3) sleep transistor sizing. In contrast to most power reduct...

متن کامل

Ultra-Low-Energy DSP Processor Design for Many-Core Parallel Applications

Background and Objectives: Digital signal processors are widely used in energy constrained applications in which battery lifetime is a critical concern. Accordingly, designing ultra-low-energy processors is a major concern. In this work and in the first step, we propose a sub-threshold DSP processor. Methods: As our baseline architecture, we use a modified version of an existing ultra-low-power...

متن کامل

The energy and entropy of VLSI computations

We introduce the concept of energy index, a measure which can be used to estimate the power dissi-pation of a standard implementation of the high-level speciication for an asynchronous circuit. This energy index is related to information-theoretic entropy measures. It is shown how these measures can be used to design low-power circuits.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014